Fifth Semester B.E. Degree Examination, June/July 2011 Formal Languages and Automata Theory

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions selecting atleast TWO questions from each part.

PART - A

Define symbols, alphabets, strings and languages, with examples.

(04 Marks)

- b. Construct a DFA to accept strings over {a, b}, such that every block of length five contains at least two a's. Use extended transition of function to trace a string W = aabba.
- c. Prove that if D = $(\theta_D, \Sigma, \delta_D, \{q_0\}, F_D)$ is the DFA constructed from NFA N = $(\theta_N, \Sigma, \delta_N, \delta_N, f_D)$ $\{q_N\}$, F_N) by subset construction then L(D) = L(N). (08 Marks)
- a. Define ∈ NFA. What are the steps involved in converting ∈ NFA to DFA. Convert following \in - NFA to DFA. (08 Marks)

Fig. Q2(a)

- b. Write regular expression for
 - i) $L = \{a^n b^m | n \ge 4 \text{ and } m \le 3\}$
 - ii) $L = \{a^{2n} b^{2m} \mid n \ge 0, m \ge 0\}.$

(06 Marks)

c. Convert the following DFA to regular expression using Kleene's theorem.

(06 Marks)

Fig. 2(b)(DFA)

Construct NFA for the regular expression $(a^* + b^* + c^*)$.

(04 Marks)

- b. State and prove pumping lemma for regular languages. Show that $L = \{o^n \mid n \text{ is prime}\}\$ is not regular. (10 Marks)
- c. Minimize the following DFA using table filling algorithm.

(06 Marks)

		
δ	0	1
→A	В	Е
В	C	F
* C	D	H
D	Ε	H
Е	F	I
* F	G	В
G	Н	В
H	I	С
* I	A	Е

Table Q3 (C) 1 of 2

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

- 4 a. Define CFG. Write a CFG for
 - i) L = {Strings ofer a's and b's, with equal number of a's and b's }
 - ii) $L = \{a^m b^m c^i \mid n \ge 0, i \ge 1\} \cup \{a^n b^n c^m d^m \mid n, m \ge 0\}.$

(06 Marks)

- b. Design a grammar for valid expressions over operator and /. The arguments of expressions are valid identifier over symbols a, b, 0 and 1. Derive LMD and RMD for string W = (a11 b0) / (b00 a01). Write parse tree for LMD. (10 Marks)
- c. Show that the following grammar is ambiguous

$$S \rightarrow SS \mid (S) \mid \in \text{over } W = (()()()).$$

(04 Marks)

PART - B

- 5 a. Write block diagram, of PDA with its tuples. What are the two ways of accepting languages in PDA? (04 Marks)
 - b. Design a PDA for $L = \{a^i b^J c^k | J = i + k, i, k \ge 0\}$ write transition diagram and ID for string W = abbbcc. (12 Marks)
 - c. Convert following CFG to PDA.

 $S \rightarrow AS \mid \epsilon$

 $A \rightarrow OA1 \mid A1 \mid 01$.

(04 Marks)

- 6 a. Remove useless symbols from following grammar
 - $S \rightarrow aA \mid B$
 - $A \rightarrow aB \mid B$
 - $B \rightarrow aB \mid b \mid bC$
 - $D \rightarrow Ea$

 $E \rightarrow a/aE \mid bc$.

(06 Marks)

- b. Define CNF and GNF. Convert the following grammar to CNF
 - $S \rightarrow A S B \mid \in$
 - $B \rightarrow SbS|A|bb$

 $A \rightarrow aAs \mid a$.

(08 Marks)

- c. Prove that if L is a CFL and R is a regular language then $L \cap R$ is a CFL.
- (06 Marks)
- 7 a. Define Turing Machine and Instantaneous Descriptions (ID) for Turing machine. (04 Marks)
 - b. Design a Turing machine to add 2 numbers consider input = $0^{m}1$ 0^{n} and output = 0^{m+n} . Write transition diagram and ID for string W = 00/0000. (12 Marks)
 - c. Write a note on multitape and non deterministic turing machines.

(04 Marks)

- 8 a. Explain the relationship between the recursive, RE and non-RE languages. (06 Marks)
 - b. If both a language L and its compliment are RE, then prove that L is recursive. (06 Marks)
 - c. Write a short note on:
 - i) Post correspondence problem
 - ii) Undecidability of ambiguity for CFG's.

(08 Marks)

* * * * *